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Abstract. The viscous fluid motion generated by axisymmetric stagnation-point flow of strain rate a impinging
on a flat plate oscillating in its own plane with velocity amplitude U0 and frequency !, including uniform suction
of strength W0 is considered. A coordinate decomposition transforms the full Navier-Stokes equations into a
primary equation describing the steady flow and a secondary equation describing the unsteady motion coupled
to the primary solution. The solution to the boundary-value problem is governed by two dimensionless groups:
the suction parameter S = W0=

p
a� and the frequency parameter 
 = !=a, where � is the kinematic viscosity.

Numerical integrations performed with a Runge-Kutta routine provide an exact solution to the Navier-Stokes
equations. Values of the steady shear stress are found to agree with asymptotic results for large values of jSj, with
S > 0 representing suction and S < 0 representing blowing. The magnitude and phase of the unsteady shear stress
are given over a range of frequencies sufficient to recover analytical asymptotic results at large values of 
. The
unsteady shear stress lags the wall motion by � radians for 
 ! 0 and by 5�=4 radians when 
 !1. Velocity
profiles at selected parameter values during a period of plate oscillation are presented and discussed.

1. Introduction

Exact solutions of the Navier-Stokes equations are sometimes found as a “superposition”
of fundamental exact solutions that lead, by separation of coordinate variables, to nonlinear
coupled ordinary differential equations. Fundamental flows which are readily superposed
include the following presented in chronological order of their discovery: uniform shear flow
over a flat plate; the flow induced by a plate oscillating in its own plane beneath a quiescent
fluid (Stokes [1]); two-dimensional stagnation-point flow (Hiemenz [2]); the flow induced
by a disk rotating in its own plane (Karman [3]); flow over a flat plate with uniform normal
suction (Griffith and Meredith [4]); three-dimensional stagnation-point flow (Homann [5]); and
axisymmetric stagnation flow on a circular cylinder (Wang [6]). The superposition of uniform
shear flow and/or stagnation flow on a body oscillating or rotating in its own plane, with or
without suction, has led to the determination of further exact solutions to the Navier-Stokes
equations. For example, Howarth [7] superposed two-dimensional and three-dimensional
stagnation-point flows. Stuart [8], inter alia, added uniform suction at the boundary of a
rotating disk. Stuart [9] also gave the solution for a fluid oscillating about a nonzero mean
flow parallel to a flat plate with uniform suction. Glauert [10] reported on the superposition
of stagnation-point flow on a flat plate oscillating in its own plane, and also considered the
case where the plate is stationary and the stagnation stream is made to oscillate. Stuart [11]
observed that a uniform shear flow aligned with outflowing two-dimensional stagnation-point
flow offers an exact solution. Kelly [12] solved the problem of uniform flow along a flat plate
with time-dependent suction and included periodic oscillations of the external stream. Gorla
[13, 14] superposed axial cylinder translation and oscillation onto Wang’s [6] axisymmetric
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stagnation flow normal to a cylinder. Wang [15] reported the case of superposing uniform
shear flow over an infinite disk rotating in its own plane. Recently, Cunning [16] has calculated
an interesting composite boundary-layer structure when stagnation flow normal to a circular
cylinder is attended by cylinder rotation and boundary transpiration.

Most exact superposed solutions lead to a linear secondary equation coupled to a nonlinear
primary equation. The superposed flows studied by Howarth [7] and Wang [15] are exceptions
in that both the primary and secondary equations are nonlinearly coupled. In this paper
the problem of axisymmetric stagnation-point flow acting on a porous flat plate oscillating
transversely in its own plane is considered. Thus, three-dimensional stagnation-point flow
impinging on a flat plate is forced by two-dimensional plate oscillation and transpiration
normal to the plate.

It should be noted that such solutions are both of academic and practical importance. A
recent study by Jung, Mangiavacchi, and Akhavan [17] shows that high-frequency spanwise
wall oscillations act to suppress turbulence significantly in wall-bounded flows. In such
situations it is necessary to calculate the shear stress and fully understand the nature of
the laminar flow that precedes the onset to turbulence at higher Reynolds numbers. The
present investigation provides an exact solution for one such wall-bounded flow forced by
transverse plate oscillations. In x2 the governing equations and numerical solution procedure
are presented. Asymptotic results for steady flow with large suction and blowing and a high-
frequency analysis for the unsteady flow are given in x3. The primary results are presented in
x4 and closing remarks are made in x5.

2. Equations of motion and solution procedure

Cartesian coordinates x = (x; y; z) with associated unit vectors (i; j;k) and corresponding
velocity components u = (u; v; w) are employed. A plate located in the plane z = 0 executes
a periodic motionU0ei!t along thex-axis beneath axisymmetric stagnation-point flow of strain
rate a and the transpiration velocity at the plate boundary is�W0. The motion is governed by
the equation of continuity

r � u = 0 (1)

and the constant-property Navier-Stokes equations

@u

@t
+ (u � r)u = �

1
�
rp+ �r2u; (2)

in which r is the Nabla operator, � is the fluid density, p the pressure, and � the kinematic
viscosity. An inviscid solution of (1) and (2), valid far above the plate, is given by

u = ax; v = ay; w = �2az �W0; (3)

p = p0 �
1
2
�a2

h
x2 + y2 + 4z2 + 4aW0z

i
; (4)

where p0 is the stagnation pressure. We may obtain the solution of the viscous problem by
decomposing the velocity field into

u = axF 0(�) + U0G(�)e
i!t; (5)

v = ayF 0(�); (6)
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w = �2
p
a� F (�)�W0; (7)

� =
q
a=� z; (8)

p = p0 �
�a2

2

�
x2 + y2 +

�
4�
a

��
F 2 + F 0 + SF

��
; (9)

in which the terms involvingF (�) in (5)–(7) comprise the Cartesian similarity form for steady
axisymmetric stagnation-point flow. The velocity field satisfies the equation of continuity (1)
exactly. Inserting solution form (5)–(9) into the Navier-Stokes equations (2) we find the
coupled pair of ordinary differential equations

F 000 + 2FF 00 � F 0 2 + SF 00 + 1 = 0; (10)

G00 + (2F + S)G0 � (F 0 + i
)G = 0: (11)

The boundary conditions are that the tangential velocity shall equal the oscillating wall velocity
at � = 0, and that the velocity and pressure shall tend to solution (3)–(4) as � ! 1, with a
possible displacement effect in the � coordinate. Thus we have

F (0) = F 0(0) = 0; F 0(� !1)! 1; (12)

G(0) = 1; G(� !1)! 0: (13)

The dimensionless wall suction S and the dimensionless frequency 
 governing the solution
space are

S =
W0p
a�
; 
 =

!

a
; (14)

and the amplitude of transverse velocity oscillation U0 is arbitrary. The formulation is exact
for values ofU0 and
 ranging from zero to infinity and for arbitrary positive (negative) values
of S corresponding to plate suction (blowing). The case U0 = S = 0 represents the steady
axisymmetric stagnation-point flow originally studied by Homann [5]. The limit 
 = S = 0
corresponding to a flat plate moving transversely at uniform speed U0 beneath axisymmetric
stagnation-point flow was studied by Wang [18]. The caseS = 0 represents a plate undergoing
transverse oscillations beneath axisymmetric stagnation-point flow in the absence of suction.
In the present work we consider the new exact solutions wherein all three parameters come
into play. To work with real variables, we set G(�) = Gr(�) + iGi(�) in (11) and (13) to
obtain

G00

r + (2F + S)G0

r � F 0Gr +
Gi = 0; (15)

G00

i + (2F + S)G0

i � F 0Gi � 
Gr = 0; (16)

and

Gr(0) = 1; Gi(0) = 0; Gr(� !1) = 0; Gi(� !1) = 0: (17)

Results may be summarized in plots of the steady and unsteady components of wall shear
stress as a function of the control parameters. The instantaneous shear stress on the surface of
the oscillating plate calculated from the equation

� = �

�
@u

@z
i+

@v

@z
j

�
z=0

(18)
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may be written as

� = �a3=2 �1=2F 00(0) r er + �U0 (a�)1=2 jG0(0)jei(!t+�) i; (19)

where

jG0(0)j =
q
(G0

r(0))2 + (G0

i(0))
2; � = tan�1

�
G0

i(0)
G0

r(0)

�
: (20)

In (19), er is the unit vector aligned radially on the surface of the plate and r =
p
x2 + y2.

Thus, the shear stress is composed of a steady radially-directed component due to the axisym-
metric stagnation-point flow and an unsteady component aligned with the direction of plate
oscillation.

We obtain a numerical solution of the boundary-value problem (10), (12) and (15)–(17) by
using an iterative and adaptive step-size algorithm based on Runge-Kutta methods employing
the function NDSolve in Mathematica [19, pp. 108–109. For prescribed values of S and
we
treat the equations as initial-value problems, using initial guesses for F 00(0); G0

r(0); G
0

i(0),
and integrate to sufficiently large values of � . A residual function, the sum of the squares
of the mismatch between the resulting and required far-field conditions (12)3 and (17)3;4 is
minimized to a given accuracy. Calculations were carried out with 16 significant digits and the
resulting functions are accurate up to six significant digits. A far-field value of � = 3:5 was

found sufficient for all S � 0. When S � 0, we found integration to � = �S+
q
S2 + (3:5)2

to be adequate.

3. Asymptotic analysis

Asymptotic results for steady flow with large suction S and large blowing jSj when S < 0
are given in x3.1. The high-frequency behavior of the unsteady flow is presented in x3.2.

3.1. STEADY FLOW: LARGE SUCTION AND BLOWING

The asymptotic behavior of the steady solution for axisymmetric stagnation-point flow at
large and small values of the suction parameter S may be obtained for comparison with the
numerical solutions when the plate is stationary, i.e. when U0 = 0. The results presented here
follow the analysis of Pretsch [20] as outlined in Rosenhead [21, pp. 243–252]. For large
suction, F � S and neglecting (1� F 02) in (10) we obtain

F 000 + SF 00 = 0: (21)

The solution satisfying boundary conditions (12) is the asymptotic suction profile

F (�) �
1
S

�
e�S� � 1

�
+ � (S !1) (22)

with wall-shear stress proportional to

F 00(0) � S (S !1): (23)

For large negative values of S corresponding to strong blowing, we set S = �jSj and
consider jSj >> 1. It is expected that the boundary layer becomes very thick, in which case
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viscous effects will be negligible near the wall. Thus, we neglect the highest derivative term
in (10) and obtain

2FF 00 + (1� F 02)� jSjF 00 = 0: (24)

Using the usual substitution for autonomous equations, we readily find the solution satisfying
boundary conditions (12)1;2 to be

F (�) �
1

2jSj
�2 (S < 0; jSj ! 1) (25)

with wall-shear stress proportional to

F 00(0) �
1
jSj

(S < 0; jSj ! 1): (26)

We now use this result to estimate the standoff distance �st of the free stagnation point that
results from steady blowing. This point occurs along the axis of symmetry wherew = 0; from
(7) that condition is

F (�st) =
1
2
jSj: (27)

When the blowing is large, (25) and (27) give

�st � jSj (S < 0; jSj ! 1): (28)

The above results provide the asymptotic behavior of steady axisymmetric stagnation-point
flow on a plate in the limits of large suction and large blowing. An approximate result for the
wall-shear-stress parameter F 00(0) may be obtained by the procedure outlined in Appendix A.
This result,

F 00(0) =
1
2

2
4S +

s
S2 +

20
3

3
5 ; (29)

is useful for initiating integrations at intermediate values of the suction parameter where the
asymptotic results do not apply.

3.2. UNSTEADY FLOW: HIGH FREQUENCY

When 
 >> 1, we can expect the strong vorticity waves generated in the vicinity of the wall
to dominate the steady stagnation-point flow. In that event we may neglect the contributions
from F and F 0 in (11) may be neglected, leaving the constant-coefficient equation

G00 + SG0 � i
G = 0: (30)

The solution satisfying boundary conditions (13) is readily determined to be

G(t) = e�(�r+i�i)� ; (31)
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where

�r =
1
2

2
4S +

s
1
2

�p
S4 + 16
2 + S2

�35 ; (32)

�i =
1
2

s
1
2

�p
S4 + 16
2 � S2

�
: (33)

The unsteady component of u, denoted herein by ~u(�; t), calculated as the real part of the
unsteady component of (5), is therefore

~u(�; t) = U0e��r� cos (!t� �i�) (
 >> 1): (34)

Of particular interest for comparison with the numerical calculations to be presented in x4 is
the unsteady component of shear stress ~� acting in the direction of plate oscillation, viz.,

~� = �
@~u

@z

��
z=0 = �

p
a� U0j�j cos (!t+ � + �) (
 >> 1) (35)

in which the modulus and phase of � are

j�j =
q
�2
r + �2

i ; and � = tan�1
�
�i

�r

�
: (36)

Comparison with (19) shows that j�j and � given here are the asymptotic forms for the
modulus and phase of G0(0). Two limits of interest may be discerned from the above results.
If in addition to high frequency we have 4
 >> S2, the modulus and phase have the limiting
forms

j�j �
p

; � �

�

4
(4
 >> S2; 
 >> 1): (37)

On the other hand, if in addition to high frequency we have S2 >> 4
, the limiting forms are

j�j � S; �! 0 (S2 >> 4
; 
 >> 1): (38)

In the former case, according to (34)–(36), the wall-shear stress lags the plate motion by 5�=4
radians, while in the latter case the wall-shear stress and plate motion are exactly out of phase.

4. Presentation of results

Before exploring the unsteady solutions, we carried out an integration of the steady stagnation
flow with suction and blowing. The results are presented as a parametric plot of F 00(0) versus
S in Figure 1. Also included in the figure are the asymptotic results for large suction (23), large
blowing (26), and the approximate solution for F 00(0) given by (29). One observes that (29)
provides a good representation for the steady shear-stress parameter for S > �1, but below
this value the approximation becomes increasingly inaccurate. Specifically, the approximate
value of F 00(0) tends to zero as 5=3jSj while the true asymptotic behavior is 1=jSj.

The steady dimensionless displacement thickness, �̂� =
p
a=� ��, given by

�̂� =

Z
1

0

�
1� F 0(�)

�
d� (39)
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Figure 1. Steady shear-stress parameter F 00(0) as a function of the suction parameter S. Solid points are numerical
computations, dashed lines represent large suction and blowing asymptotics as noted in the legend, and the dotted
curve is the approximate solution given by Equation (29).

Figure 2. Variation of the steady displacement thickness �̂� with the suction parameterS. Solid points are numerical
computations and the dashed curve represents the large suction asymptotics �̂� � 1=S.

varies markedly with S. Note that �� is the dimensional displacement thickness. We may
obtain the variation of �̂� at large values of suction by inserting the derivative of (22) into
(39), which yields the asymptotic result

�̂� �
1
S

(S !1): (40)

The large-blowing asymptotic behavior cannot be obtained from (25), since that result is not
uniformly valid in � . Numerical evaluations of (39) over a range of S are compared with the
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Figure 3. Dimensionless Stokes stream function field 	(�; �) plotted for S = �1 showing the standoff position
of the free stagnation point located at �st �= 1:20. The contours correspond to 	 = 0; �0:15; �0:5; �1:0; �1:5
and �2:0. Arrows indicating the direction of flow appear only on the 	 = 0 contours.

asymptotic result (40) in Figure 2. As expected, the boundary layer becomes progressively
thinner with increasing suction and thickens rapidly with blowing.

For steady axisymmetric Homann flow with suction a Stokes stream function (r; z) exists.
A dimensionless stream function may be defined as

	(�; �) =
 (�; �)�
�3=a

�1=2
= ��2

�
F (�) +

2
S

�
; (41)

where � =
p
(a=�) r is the radial coordinate scaled in the same manner as the vertical

coordinate. A plot of the streamlines for S = �1 in the neighborhood of the free stagnation
point presented in Figure 3 shows a standoff distance �st

�= 1:20. Numerical determinations
of the standoff distance defined by (27) at selected values of S are compared with the large
blowing asymptotics for �st given by (28) in Figure 4.

Numerical integration of (15)–(17) governing the unsteady behavior of the motion becomes
increasingly difficult for large values of 
 and large negative values of S. This is due to the
fact that the thickness of the unsteady boundary layer embedded within the steady boundary
layer becomes small relative to �̂�, making the equations increasingly stiff. Nevertheless, we
have carried out integrations over a wide range of dimensionless frequencies 0 < 
 < 1000
for selected values of S in the range �2 < S < 2.

The unsteady numerical results may be summarized in a plot of the magnitude and phase
of the shear stress as functions of 
 with parameter S. Figure 5a exhibits the variations of
jG0(0)j with frequency in the low-frequency range 0 < 
 < 14 for the selected values of S.
In Figure 5b the corresponding variations of phase � with frequency are shown. Note that for
blowing the phase overshoots its asymptotic value, approaching �=4 from above. The high-
frequency behavior of these quantities plotted in semi-log form for frequencies up to
 = 1000
are given in Figures 6a,b which also include, plotted as dashed lines, the asymptotic behaviors
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Figure 4. Variation of the standoff distance �st of the free stagnation point as a function of blowing strength �S.
Solid points are numerical computations and the dashed curve represents the large blowing asymptotics �st � jSj.

Figure 5a. Low-frequency variation of the unsteady shear-stress parameter jG0(0)j for selected values of S.

of jG0(0)j and � according to (32), (33) and (36). It may be observed that the numerical results
tend toward the S-independent asymptotic limits given in (37) as 
 ! 1. In particular, the
phase �, at each value of S, tends asymptotically toward the constant value �=4, in agreement
with other oscillatory problems of this type [9, 10, 12]. Note in Figure 6b that the convergence
of � toward its final asymptotic value is very slow.

In the case of suction, the instantaneous position of zero wall-shear stress implies the
instantaneous position xs of the stagnation point. Setting � = 0 in (19), and taking the real
part, we obtain ys = 0 and

xs = �
�
U0 jG0(0)j
aF 00(0)

�
cos(!t+ �): (42)
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Figure 5b. Low-frequency variation of the phase � of unsteady shear-stress for selected values of S.

Figure 6a. High-frequency variation of the unsteady shear-stress parameter jG0(0)j for selected values of S. Solid
points are the numerical computations, dashed lines display the asymptotic behavior at S = �2, and the bold solid
line represents the S-independent asymptotic limit.

When the plate moves steadily at speedU0 for which! = � = 0, we find xs = 0:715531U0=a
in agreement with Wang [18].

We render the velocity component (5) along the direction of plate oscillation dimensionless
by dividing through by U0. Taking the real part we find

u

U0
= û(�) + ~u(�; t) =

�
ax

U0

�
F 0(�) +

�
Gr(�) cos!t�Gi(�) sin!t

�
; (43)

where the steady component û(�) and the unsteady component ~u(�; t) are implicitly defined
in the equation. A plot of ~u(�; t) versus � over a complete oscillation period at �=4 increments
of !t is shown in Figure 7 for the selected parameter values S = 0 and 
 = 10. Although
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Figure 6b. High-frequency variation of the phase � of unsteady shear stress for selected values of S. Solid points
are the numerical computations, dashed lines display the asymptotic behavior at each S, and the bold solid line
represents the S-independent asymptotic limit � = �=4.

Figure 7. Normalized ~u(�; t)=U0 unsteady velocity profiles along the direction of plate oscillation at S = 0 and

 = 10 displayed at equal time increments during one period of plate oscillation: (a) !t = 0, (b) �=4, (c) �=2,
(d) 3�=4, (e) �, (f) 5�=4, (g) 3�=2, (h) 7�=4.

the variation of ~u with � is smooth, note that it is not monotonic. At higher frequencies the
profiles are similar, only compressed toward the wall, indicating that less of the outer flow
field is affected by the plate oscillation. For increasing (decreasing) values of the suction
parameter S, similar compression (expansion) of the velocity profiles is observed. Profiles of
the total velocity u=U0 along the direction of plate oscillation over one oscillation period at
the location (x; y) = (U0=a; 0) are shown in Figure 8 for S = �1 and 
 = 10. Note that
for !t � �=2 when the plate is moving in the negative x-direction, the fluid adjacent to the
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Figure 8. Normalized u(�; t)=U0 total velocity profiles along the direction of plate oscillation at S = �1 and

 = 10 displayed at equal time increments during one period of plate oscillation: (x; y) = (U0=a; 0), (a) !t = 0,
(b) �=4, (c) �=2, (d) 3�=4, (e) �, (f) 5�=4, (g) 3�=2, (h) 7�=4.

plate moves in unison with it, whereas the fluid in regions distant from the plate moves in the
positive x-direction, indicating the presence of reversed flow.

5. Summary and conclusion

The problem of axisymmetric stagnation-point flow impinging on a flat plate oscillating
in its own plane with suction and blowing has been solved by reduction of the Navier-
Stokes equations to a set of coupled ordinary differential equations and subsequent numerical
integration. Numerical solutions are given over a range of dimensionless frequencies 0 < 
 <
1000 and dimensionless suction strengths �2 < S < 2. The numerical calculations clearly
tend to the asymptotic expressions for the steady shear-stress parameter F 00(0) as jSj ! 1,
both in the limit of large suction (S > 0) and in the limit of large blowing (S < 0), although
the convergence in the former is much slower than in the latter. With large blowing the position
of the free stagnation point in the steady flow problem is observed to approach the asymptotic
prediction �st � jSj.

The magnitude jG0(0)j and phase � of the unsteady shear stress induced by the oscillating
wall have been computed over the range of suction and blowing �2 < S < 2. The low-
frequency variations of these quantities evolve to the high-frequency asymptotic behaviors
determined by analysis. We find that the phase lag (� + �) between the wall-shear stress and
the oscillating plate tends to the constant value 5�=4 at high frequencies, a result anticipated
from the original work of Lighthill [22] and Stuart [9]. The numerical results confirm that the
high-frequency asymptotics provide an accurate description of the flow for all 
 > 100, at
least for the range of transpirations covered in this study.
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Appendix

A. An approximation for the steady shear-stress parameter

In integrating the steady equation for F (�) we must iterate on F 00(0) to satisfy the far-field
boundary condition (12)3 as � ! 1. Estimates for this initial value useful in carrying out
the numerical integrations may be obtained by the following procedure. It is convenient to
introduce the suction parameter S into the boundary condition by writing, in lieu of (7),

w = �2
p
a� f(�); (44)

which gives rise to the boundary-value problem

f 000 + 2ff 00 + (1� f 02) = 0; (45)

f(0) = S=2; f 0(0) = 0; f 0(� !1) = 1: (46)

In this formulation we see that the suction parameter appears in the boundary conditions
rather than in the differential equation itself. We introduce a stretching parameter � through
the affine transformation

� = ��; g = �f (47)

to obtain the modified boundary-value problem

�2g000 + 2gg00 + (1� g02) = 0; (48)

g(0) =
�S

2
; g0(0) = 0; g0(� !1) = 1; (49)

where a prime now denotes differentiation with respect to �. The asymptotic suction profile
solution to this equation is given by

g(�) = � � 1 + e�� +
�S

2
(50)

and we aim to minimize the square of the residual function obtained by inserting (50) into the
governing equation (45). The residual is readily calculated to be

R(�; �) = e�2� +
�
2� + �(S � �)

�
e�� (51)

and, integrating its square over the fluid domain, we arrive at

Q(�) =

Z
1

0
R2(�; �) d� =

1
2
�2(S � �)2 +

5
3
�(S � �) +

53
36
: (52)

Finally, we minimize Q(�) with respect to � to obtain a cubic equation for �. The relevant
root is

� =
1
2

2
4S +

s
S2 +

20
3

3
5 (53)

and from (47) and (50) we find F 00(0) = �. This is the result reported as Equation (29) in the
main text.
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